
Final Summary of Research for NASA Grant

NAG5-10739: VEXT: A Virtual Observatory

Exploration Toolkit

Jeff Schneider I and Andy Connolly:

1 Carnegie Mellon Univ., 5000 Forbes Ave., Pittsburgh, PA-15217

2 Dept. of Physics and Astronomy, Univ. of Pittsburgh, Pittsburgh, PA-15260

Abstract. This final report consists of two main parts. The first is taken from a

paper by the PiCA Group which describes our ongoing work in fast computation

of n-point correlation functions, (see Moore et al. 2001).

We present here a new algorithm for the fast computation of N-point correlation

functions in large astronomical data sets. The algorithm is based on kd-trees which

axe decorated with cached sufficient statistics thus allowing for orders of magnitude

speed-ups over the naive non-tree-based implementation of correlation functions.

We further discuss the use of controlled approximations within the computation

which allows for further acceleration. In summary, our algorithm now makes it pos-

sible to compute exact, all-pairs, measurements of the 2, 3 and 4-point correlation

functions for cosmological data sets like the Sloan Digital Sky Survey (SDSS; York

et al. 2000) and the next generation of Cosmic Microwave Background experiments

(see Szapudi et al. 2000).

The second part summarizes the progress made by the PiCA Group in this area

through the AISR grant.

1 Introduction

Correlation functions are some of the most widely used statistics within as-

trophysics (see Peebles 1980 for a extensive review). They are often used to

quantify the clustering of objects in the universe (e.g. galaxies, quasars etc.)

compared to a pure Poission process. More recently, they have also been used

to measure fluctuations in the Cosmic Microwave Background (see Szapudi

et al. 2000). On large scales, the higher-order correlation functions (3-point

and above) can be used to test several fundamental assumptions about the

universe; for example, our hierarchical scenario for structure formation, the

Gaussianity of the initial conditions as well as testing various models for the

biasing between the luminous and dark matter. The reader is referred to Sza-

pudi (2000), Szapudi et al. (1999a,b) and Scoccimarro (2000; and references

therein) for an overview of the usefulness of N-point correlation functions in

constraining cosmological models.

Over the coming decade, several new, massive cosmological surveys will

become available to the astronomical community. In this new era, the qual-

ity and quantity of data will warrant a more sophisticated analysis of the

2 Jeff Schneider and Andy Connolly

higher-order correlation functions of galaxies (and other objects) over the

largest range of scales possible. Our ability to perform such studies will be

severely limited by the computational time needed to compute such functions

and no-longer by the amount of data available. In this paper, we address this

computational "bottle-neck" by outlining a new algorithm that uses innova-

tive computer science to accelerate the computation of N-point correlation

functions far beyond the naive O(R N) scaling law (where R is the number of

objects in the dataset and N is the power of correlation function desired).

The algorithm presented here was developed as part of the "Computa-
tional AstroStatistics" collaboration (see Nichol et al. 2000) and is a member

of a family of algorithms for a very general class of statistical computations,
including nearest-neighbor methods, kernel density estimation, and cluster-

ing. The work presented here was initially presented by Gray & Moore (2001)

and will soon be discussed in a more substantial paper by Connolly et al.
(2001). In this conference proceeding, we provide a brief review of hi-trees

(Section 2), a discussion of the use of hi-trees in range searches (Section
3), an overview of the development of a fast N-point correlation function

code (Section 4) as well as presenting the concept of controlled approxima-

tions in the calculation of the correlation function (Section 5). In Section 6,

we provide preliminary results on the computation speed-up achieved with

this algorithm and discuss future prospects for further advances in this field
through the use of other tree structures.

2 Review of kd-trees

Our fast N-point correlation function algorithm is built upon the kd-tree

data structure which was introduced by Friedman et al. (1977). A kd-tree
is a way of organizing a set of datapoints in k-dimensional space in such a

way that once built, whenever a query arrives requesting a list all points in

a neighborhood, the query can be answered quickly without needing to scan
every single point.

The root node of the hi-tree owns all the data points. Each non-leaf-node

has two children, defined by a splitting dimension n.SPLrrDIM and a splitting
value n.SmzVALuZ. The two children divide their parent's data points between

them, with the left child owning those data points that are strictly less than

the splitting value in the splitting dimension, and the right child owning the
remainder of the parent's data points:

Xi E n.LzFT _ Xi[n.SPLITDIM] < n.SPLITVALUE and xi E n (1)

Xi E n.RmaT ¢:_ xi[n.SPL,TD,u] _ n.SPL,TV^LuS and xi E n (2)

As an example, some of the nodes of a hi-tree are illustrated in Figures 1.

hi-trees are usually constructed top-down, beginning with the full set of

points and then splitting in the center of the widest dimension. This produces

VEXT: A Virtual Observatory Exploration Toolkit 3

• "', .: 2:

"_._...:..

-i
. I ii

_%t•° •

Figure la: The top node of a kdtrce is sim-

ply a hyper-rectangle surrounding the data-

points.

•,
., • •

•.

Figure lb:

nodes.

• i

• ".:. ": ::

it• °,

•.-.: _...:. .

,.(...-...

!

The second level contains two

Figure lc: The third level contains four

nodes. Note how a parent node creates its

two children by splitting in the centers of its

widest dimension

• ".:. ": ::

so °-• _• •..

Figure ld: The set of nodes in the sixth level

of the tree.

two child nodes, each with a distinct set of points. This procedure is then

repeated recursively on each of the two child nodes.

A node is declared to be a leaf, and is left unsplit, if the widest dimension

of its bounding box is <_ some threshold, MINBOXWIDTIt. A node is also left

unsplit if it denotes fewer than some threshold number of points, train. A leaf

node has no children, but instead contains a list of k-dimensional vectors:

the actual datapoints contained in that leaf. The values MINBOXWIDTH : 0

and rmin : 1 would cause the largest kd-tree structure because all leaf nodes

would denote singleton or coincident points. In practice, we set MINBOXWIDTtt

4 Jeff Schneider and Andy Connoily

to 1% of the range of the data point components and rmin to around 10. The

tree size and construction thus cost considerably less than these bounds be-

cause in dense regions, tiny leaf nodes are able to summarize dozens of data

points. The operations needed in tree-building are computationally trivial

and therefore, the overhead in constructing the tree is negligible. Also, once
a tree is built it can be re-used for many different analysis operations.

Since the introduction of kd-trees, many variations of them have been

proposed and used with great success in areas such as databases and com-

putational geometry (Preparata & Shamos 1985). R-trees (Guttman 1984)
are designed for disk resident data sets and efficient incremental addition of

data. Metric trees (see Uhlmann 1991) place hyperspheres around tree nodes,

instead of axis-aligned splitting planes. In all cases, the algorithms we discuss

in this paper could be applied equally effectively with these other structures.

For example, Moore (2000) shows the use of metric trees for accelerating

several clustering and pairwise comparision algorithms.

3 Range Searching

Before proceeding to fast N-point calculations, we will begin with a very

standard kd-tree search algorithm that could be used as a building block for
fast 2-point computations.

For simplicity of exposition we wilt assume the every node of the kd-tree

contains one extra piece of information: the bounding box of all the points

it contains. Call this box n.BousDBox. The implication of this is that every

node must contain two new k dimensional vectors to represent the lower

and upper limits of each dimension of the bounding box. The range search

operation takes two inputs. The first is a k-dimensional vector q called the
query point. The second is a separation distance sin. The operation returns

the complete set of points in the kd-tree that lie within distance shi of q.

* RangeSearch(n, q, Shi)
Returns a set of points S such that

x E S ¢_ x E n and Ix- q[< Shi (3)

* Let MINDIST ::: the closest distance from q to n.BowDBox.

• If MINDIST _> Shi then it is impossible that any point in n can be within
range of the query. So simply return the empty set of points without

doing any further work.

* Else, if n is a leaf node, we must iterate through all the datapoints in its

leaf list. For each point, find if it is within distance sm of q. ff so, add it
to the set of results.

. Else, n is not a leaf node. Then:

- Let S|e[t :---- RangeSearch(n.L_vT, q, sin)

- Let Sright := RangeSearch(n.mQHT, q, sin)

VEXT: A Virtual Observatory Exploration Toolkit 5

I!

Figure 2a: The shaded rectangles denote

nodes that were pruned during a search for

the set of points that lie inside the circle.

Figure 2b: When the range is larger there are

fewer opportunities for pruning.

- Return _left I J Sright.

Figure 2a shows the result of running this algorithm in two dimensions.
Many large nodes are pruned from the search. 117 distance calculations were

needed for performing this range search, compared with 499 that would have

been needed by a naive method.
Note that it is not essential that kd-tree nodes have bounding boxes ex-

plicitly stored. Instead a hyper-rectangle can be passed to each recursive call
of the above function and dynamically updated as the tree is searched.

Range searching with a hi-tree can be much faster than without if the

range is small, containing only a small fraction of the total number of data-

points. But what if the range is large? Figure 2b shows an example in which

hi-trees provide little computational saving because almost all the points
match the query and thus need to be visited. In general this problem is un-

avoidable. But in one special case it can be avoided--if we merely want. to
count the number of datapoints in a range instead of explicitly find them all.

3.1 Range Counting and Cached Sufficient Statistics

We will add the following field to a hi-tree node. Let n.NuMPOINTS be the

number of points contained in node n. This is the first and simplest of a set
of hi-tree decorations we refer to as cached sufficient statistics (see Moore

& Lee 1998). In general, we frequently stored the centroid of all points in a
node and their covariance matrix.

6 JeffSchneiderandAndyConnolly

Oncewehaven.NuMPOINTS it is trivial to write an operation that counts

the number of datapoints within some range without explicitly visiting them.

• RangeCount(n, q, shi)

Returns an integer: the number of points that are both inside the n and

also within distance shi of q.

a Let MINDIST :----the closest distance from q to n.BouNvBox.
• If MINDIST _ Shi then it is impossible that any point in n can be within

range of the query. So simply return 0.
• Let MAXDIST :_- the furthest distance from q to n.BousvBox.

• If MAXDIST _(shi then every point in n must be within range of the
query. So simply return n.NuMPOINTS.

• Else, if n is a leaf node, we must iterate through all the datapoints in
its leaf list. Start a counter at zero. For each point, find if it is within

distance sai of q. If so, increment the counter by one. Return the count
once the full list has been scanned.

• Else, n is not a leaf node. Then:

- Let Cleft :---- I:_LngeCount(n.LEFT, query, sai)
- Let Cright := RangeCount(n.mcM% query, sai)
- Return Cleft + C¢ight.

The same query that gave the poor range search performance in Figure

2b gives good performance in Figure 3. The difference is that a second type
of pruning of the search is possible: if the hyperrectangle surrounding the n

is either entirely outside or inside the range then we prune.

4 Fast N-point Correlation Functions

4.1 The Single Tree Approach to Two-Point Computation

It is easy to see that the 2-point correlation function is simply a repeated set

of range counts. For example, given a minimum and maximum separation Sto
and shi we run the following algorithm:

• SingleTree2Point(X, n, slo, shi)
Input X is a dataset, represented as a matrix in which the kth row corre-

sponds to the kth datapoint. X has R rows and k columns. Input n is the

root of a kdtree built from the data in X. Output integer: the number of

pairs of points (xi, x j) such that Sto <_ [xi - xj [< Shi.

•C:=0
• For i between 1 and R do:

- C := C + RangeCount(n, xi, Shi) -- RangeCount(n, x_, Slo)

Note that in practice we do not use two range counts at each iteration, but

one slightly more complex rangecount operation

RangeCountBetweenSeparations(n, q, sto, sai)

that directly counts the number of points whose distance from q is between

sto and Shi.

VEXT: A Virtual Observatory Exploration Toolkit

J

Fig. 3. When doing

a range count, nodes

entirely within range

can also be pruned

and added to the

total count. This ad-

ditional pruning adds

significant speed-ups

to the slower range

count discussed in

Figure 2b. Now one

just spends time

studying nodes on

the boundary of the

range count.

4.2 The Dual Tree Approach to Two-Point Computation

The previous algorithm iterates over all datapoints, issuing a range count

operation for each. We can save further time by turning that outer iteration

into an additional kd-tree search. The new search will be a recursive procedure

that takes two nodes, na and rib, as arguments. The goal will be to compute

the number of pairs of points (x,y) such that x E ha, y E rib, and Slo <_

[x- Yl < shi.

• DualTreeCount(na, rib, Sto, shi)

Returns an integer: the number of pairs of points (x, y) such that x E ha,

y E rib, and Sto <_ Ix - y[< Shi.

• Let MINDIST :---- the closest distance between na.BOuNDBox and _b.BOUNDBOX-

• If MIND1ST __>Shi then it is impossible that any pair of points can match.

So simply return 0.

• Let MAXDIST :: the furthest distance between na.BOu_DBOx and nb.BOOr_DBoX.

• If MAXDIST <: Slo then it is again impossible that any pair of points can

match. So simply return 0.

• If S_o <_ MINDIST <__MAXDIST < shi then all pairs of points must match.

Use na.NuMPOINTS and nb.NuMPOISTS to compute the number of resulting

pairs na.NUMPO1NTS X nb.NUMPOINTS_ and return that value.

• Else, if n_ and nb are both leaf nodes, we nmst iterate through all pairs

of datapoints in their leaf lists. Return the resulting (slowly computed)

count.

8 Jeff Schneider and Andy Connolly

• Else at least one of the two nodes is a non-leaf. Pick the non-leaf with the

largest number of points (breaking ties arbitrarily), and call it n*. Call
the other node n-. Then:

- Let Cleft :---- DualTreeCount(n*.L_,r% n-, Slo, sai)

- Let Cright := DualTreeCount(n*.maMT, n-, slo, shi)

- Return Cleft + Cright-

Computing a 2-point function on a dataset X then simply consists of com-

puting the value C = DualTreeCount(nroot,nroot, Sto, shi), where nroot is

a kd-tree built from X, for a range of bins with minimum and maximum

boundaries of Sto and hisep. We note here that the 2-point correlation func-

tion, the quanity of interest is not simply C, but C/2 (the number of unique
pairs of objects).

A further speed-up can be obtained by simultaneously computing the
DualTreeCount(nroot, nroot, Slo, Shi) over a series of bins. We will discuss

this in further detail in Connolly et al. (2001).

4.3 Redundancy Elimination

So far, we have discussed two operations - exclusion and subsumption - which
remove the need to traverse the whole tree thus speeding-up the computation

of the correlation function. Another form of pruning is to eliminate node-node

comparisons which have been performed already in the reverse order. This

can be done simply by (virtually) ranking the datapoints according to their

position in a depth-first traversal of the tree, then recording for each node the

minimum and maximum ranks of the points it owns, and pruning whenever
na'S maximum rank is less than nb's minimum rank. This is useful for all-

pairs problems, but will later be seen to be essential for all-k-tuples problems.

This kind of pruning is not practical for Single-tree search.

4.4 Multiple Trees Approach to N-Point Computation

The advantages of Dual-Tree over Single-Tree are so far two fold. First, Dual-
tree can be faster, and second it can exploit redundancy elimination. But two

more advantages remain. First, we can extend the "2-tree for 2-point" method

up to "N-trees for N-point". Second (discussed in Section 5.1), we can perform

effective approximation with Dual-trees (or n-trees). We now discuss the first

of these advantages.

The N-point computation is parameterized by two n × n symmetric ma-
trices: L and H. We wish to compute

R R R

E E "'" E I(L,H,i,,i2,...i,)
Q:I i2:1 i_:1

(4)

VEXT:A VirtualObservatory Exploration Toolkit 9

where I(L, H, il, i2,...in) is zero unless the following conditions hold (in

which case it takes the value 1):

Vl < i < j < n, L(i,j) < Ixi, - xijl < H(ij) (5)

We will achieve this by calling a recursive function FastNPoint on an n-tuple

of kdtree nodes (nl, n2... nn). This recursive function much return

Z Z "'" Z I(L,H, il,i2,...i,) (6)

ilEn 1 i2Cn 2 i_Enn

• FastNPoint(na,nb, Sto, shi)

• Let ALLSUBSUMED:=TRUE

• For i= 1ton do

- Forj =i+1 tondo
* Let MINDIST :---- the closest distance between ni.BovsDBox and

nj .BOONDBOX.

* If MINDIST > H(i,j) then it is impossible that any n-tuple of
points can match because the distance between the ith and jth

points in any such n-tuple must be out of range. So simply return
0.

* Let MAXDIST :-- the furthest distance between ni.BOUNDBOXand

?/j .BOUNDBOX.

* IfMAXDIST < L(ij)then similarlyreturn0.

* IfL(i,j)<_MINDIST _< MAXDIST < H(i,j)then every n-tuple

has the property the the ith member and jth member match.

We are interestedin whether thisistrue for all(i,j)pairsand

so the firsttime we are disappointed (by discoveringthe above

expressiondoes not hold)then we willupdate the ALLSUBSUMED

flag.Thus the actualcomputation at thisstep is:

IfL(ij)> MINDIsT or MAXDIST _>H(i,j)then
ALLSUBSUMED :=FALSE.

• IfALLSUBSUMED has remained true throughout the above double loop,

we can be sure thatevery n-tuple derivedfrom the nodes inthe recursive

callmust match, and so we can simply return

_Ini .NuMPOINTS (7)

i=1

• Else, if all of nl,n2,...nn are leaf nodes we must iterate through all

n-tuples of datapoints in their leaf lists. Return the resulting (slowly

computed) count.
• Else at least one of the nodes is a non leaf. Pick the non-leaf with the

largest number of points (breaking ties arbitrarily), and assume it has
index i -- i*. Then:

10 JeffSchneiderandAndyConnolly

- LetCjeft := FastNPoint(nl,... ,ni..L_pz,... ,nn)
-- Let Cright ;---- FastNPoint(nl,..., ni'-a'QHT,.--, nn)

-- Return Cleft + Cright-

The full N-point computation is achieved by calling FastNPoint with
arguments consisting of an n-tuple of copies of the root node.

We should note once again it is possible to save considerable amounts of

computation by eliminating redundancy. For example, in the 4-point statis-

tic, the above implementation will recount each matching 4-tuple of points
(z, y, z, w) in 24 different ways: once for each of the 4! permutations of

(x, y, z, w). Again, this excess cost can be avoided by ordering the datapoints

via a depth-first tree indexing scheme and then pruning any n-tuple of nodes

violating that order. But the reader should be aware of an extremely messy
problem regarding how much to award to the count in the case that a sub-

sume type of pruning can take place, ff all nodes own independent sets of
points the answer is simple: the product of the node counts. If all nodes are

the same then the answer is again simple: (_), where u is the number of
points in the node. Somewhat more subtle combinatorics are needed in the

case where some nodes in the n-tuple are identical and others are not. And

fearsome computation is needed in the various cases in which some nodes are
descendants of some other nodes.

5 Controlled Approximation

In general, when the final answer comes back from FastNPoint, the ma-

jority of the quantity in the count will be the sum of components arising

from large subsume prunes. But the majority of the computational effort will

have been spent on accounting for the vast number of small but unprunable

combinations of nodes. We can improve the running time of the algorithm by

demanding that it also prunes it search in cases in which only a tiny count
of n-tuples is at stake. This is achieved by adding a parameter, T, to the

FastNPoint algorithm, and adding the following lines at the start:

n

• Let Cmax : = l-Ii=l ni.NuMPO1NTS
* If Cmax < T then quit this recursive call.

This will clearly cause an inaccurate result, but fortunately it is not hard to

maintain tight lower and upper bounds on what the true answer would have

been if the approximation had not been made. Thus FastNPoint(nl, n2,..., nn, T)
now returns a pair of counts (Clo, Chi) where we can guarantee that the true

count C lies in the range Clo _ C _< Chi.

5.1 Iterative Deepening for Controlled Approximation

Suppose the true value of the N-point function is C but that we are prepared

to accept a fractional error of e: we will be happy with any value Capprox such

1012

101°

lo'

_o'

10O

VEXT: A Virtual Observatory Exploration Toolkit 11

loo

10 z

T_m_ ol Duat-Tree A_ot_m v C_ssma_

....... , , , , , ,

2D Galaxy Data I

C_ss_c_ N 2 _goerthm I _ • _
Rmndom Dala _

$0 " ' ' ' ' '

10O 10O 10 4 I0 5 10O 10 7 101 10 _

N

Fig. 4. The com-

putational time of
our algorithm versus
the size of dataset.
The crosses are real

2-dimensional pro-
jected galaxy data
while the dots axe

just drawn from a
Poission distribution.

The theoretically
expected scaling law
of NV_ is shown

and agrees well with
the observed data.
The naive N 2 law

is also plotted for
comparison

that

tC_0prox -- C I < eC (8)

It is possible to adapt the n-tree algorithm using a best-first iterative deep-

ening search strategy to guarantee this result while exploiting permission

to approximate effectively by building the count as much as possible from

"easy-win" node pairs while doing approximation at hard deep node-pMrs.

This is simply achieved by repeatedly calling the previous approximate algo-

rithm with diminishing values of T until a value is discovered that satisfies

Equation 8.

6 Discussion

We plan to present a more detailed discussion of the techniques presented

here in a forthcoming paper (Connolly et al. 2001). That paper will also in-

clude a full analysis of the computational speed and overhead of our N-point

correlation function algorithm and compare those with existing software for

computing the higher order correlatioa functions e.g. Szapudi et al. 1999a.

However, in Figure 4, we present preliminary results on the scaling of com-
putational timing needed for a 2-point correlation function as a function

of the number of objects in the data set. For these tests, we computed all

the data-data pairs for random data sets and real, projected 2-dimensional

galaxy data. These data show that our 2-point correlation function algorithm

scales as O(N V_) (for projected 2-dimensional data) compared to the naive

all-pairs scaling of O(N 2) where here N is the size of the dataset under con-

sideration. To emphasis the speed-up obtained by our algorithm (Figure 4),
an all-pairs count for a database of l0 T objects would take only 10 hours (on

12 Jeff Schneider and Andy Connolly

our DEC Alpha workstation) using our methodology compared to _ 10,000

hours (> 1 year) using the naive N 2 method. Clearly, binning the data would

also drastically increase the speed of analyses over the naive all-pairs O(N 2)

scaling but at the price of lossing of resolution.

Similar spectacular speed-ups will be achieved for the 3 and 4-point func-

tions and we will report these results elsewhere (Connolly et al. 2001). Fur-

thermore, controlled approximations can further accelerate the computations

by several orders of magnitude. Such speed-ups are vital to allow Monte Carlo

estimates of the errors on these measurements. In summary, our algorithm

now makes it possible to compute an exact, all-pairs, measurement of the 2,

3 and 4-point correlation functions for data sets like the Sloan Digital Sky

Survey (SDSS). These algorithms will also help in the speed-up of Cosmic

Microwave Background analyses as outlined in Szapudi et al. (2000).

Finally, we note here that we have only touched upon one aspect of how

trees data structures (and other computer science techniques) can help in

the analysis of large astrophysical data sets. Moreover, there are other tree

structures beyond hi-trees such as ball trees which could be used to optimize

our correlation function codes for higher dimensionality data. We will explore
these issues in future papers.

7 Further Progress

Our progress in fast n-point correlation functions has centered in the following
two areas:

7'.1 Marked and weighted n-point correlation

A new algorithm was developed and implemented in the n-point software to

do weighted n-point correlations. See Biesbart et al. (2002) for a description
of marked and weighted n-point correlation functions and their use in astro-

physics. In particular, it is possible to compute the equivalent of a marked

n-point correlation function in many cases through the use of a weighted
n-point computation.

The new algorithm will be described in an upcoming journal paper on fast
computation of n-point correlation functions. This paper will also present our

latest results of running weighted n-point correlations on large data sets. The

new algorithm hinges on two specific advances:

1. Unique counting. The algorithm was changed so that multiple matches

to the same template by the same set of points were only counted once.

For example, the same pair of points could be counted as matching the

same template twice - once for each mapping between the actual data

points and the template points. Similarly, in a 3-point computation, a

template might be matched 6 times by the same triple, or twice, or just

VEXT: A Virtual Observatory Exploration Toolkit 13

once. In the naive, exhaustive algorithm, making the counting unique is

trivial, but extra care is required during cutoffs in the fast algorithm.

2. Weighting. Again, the naive algorithm can trivially add weights to its

computation. The key to the fast algorithm is an efficient way to store

extra cached information at each node of the kd-tree and the method by

which that information can be used to get an exact, weighted, answer

when a cutoff is made.

7.2 Software availability

Through the efforts of this grant, all of the software described in this docu-

ment has been tested, documented, and made publicly available to scientists.

To download the software, go to www.cs.cmu.edu/_AUTON and click on

the link for "Astrostatistics Software." From this page, click on the link to

download the NPT software. The software is written in plain C and the doc-

umented source code can be downloaded. On this page, you will also notice

additional software packages made available to the astrophysics community

through the continuing efforts of the PiCA Group.

References

1. Biesbart, Kerscher, and Mecke, 2002, see

http: //xxx.lanl.gov/abs/physics/0201069

2. Counolly, A. J., et al. 2001, in preparation

3. Friedman, J. H., Bentley, J. L., Finkel, R. A., 1977, Transactions on Mathe-

matical Software, 3, 209

4. Gray, A., Moore, A. W., 2001, Proceedings of Advances in Neural Information

Processing Systems 13.

5. Guttman, A., 1984, Proceedings of the Third ACM SIGACT-SIGMOD Sym-

posium on Principles of Database Systems

6. Moore, A. W., Lee, M. S., 1998, Journal of Artificial Intelligence Research, 8

7. Moore, A. W., 2000, Proceedings of the Twelfth Conference on Uncertainty in

Artificial lnteUi9ence

8. A. Moore, A. Conuolly, C. Genovese, A. Gray, L. Grone, N. Kanidoris, R.

Nichol, J. Schneider, A. Szalay, I. Szapudi, and L. Wasserman, "Fast Algo-

rithms and Efficient Statistics: N-point Correlation Functions", in Proceedings

of MPA/MPE/ESO Conference "Mining the Sky", July 31 - August 4, 2000,

Garching, Germany

9. Nichol, R. C., et al., 2000, proceedings from Virtual Observatories of the Future,

Brunner& Szalay (astro-ph/0007404)

10. Peebles, P. J. E., 1980, The Large-Scale Structure of the Universe, Princeton

University Press

11. Preparata, F. P., Shamos, M., 1985, Computational Geometry, Springer-Verlag

12. Scoccimarro, R., ApJ, see astro-ph/O004086

13. Szapudi, I., 2000, ApJ, see astro-ph/0010256

14. Szapudi, I., et al., 2000, ApJ, see astro-ph/0010256

14 JeffSchneiderandAndyConnolly

15.Szapudi,I.,etal.,1999a,ApJ,seeastro-ph/0008131
16.Szapudi,I.,etal.,1999b,ApJ,517,54
17.Uhlmann,J. K., 1991, Information Processing Letters, 40, 175

18. York, D., et al., 2000, AJ, 120, 1579

